Large deformation behavior of functionally graded porous curved beams in thermal environment

نویسندگان

چکیده

Abstract The in-plane thermoelastic response of curved beams made porous materials with different types functionally graded (FG) porosity is studied in this research contribution. Nonlinear governing equations are derived based on the first-order shear deformation theory along nonlinear Green strains. solved by aid Rayleigh–Ritz method Newton–Raphson method. modified rule-of-mixture employed to derive material properties imperfect FG beams. Comprehensive parametric studies conducted explore effects volume fraction and various dispersion patterns porosities, temperature field, arch geometry as well boundary conditions equilibrium path stability behavior Results reveal that porosities have a significant effect thermal path, maximum stress, bending moment at crown Moreover, influence structural central radial displacement evaluated. show make considerable difference displacements same dispersion. Due absence similar results specialized literature, paper likely provide pertinent instrumental toward reliable design environment.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Buckling of Functionally Graded Beams

In this article, thermal stability of beams made of functionally graded material (FGM) is considered. The derivations of equations are based on the one-dimensional theory of elasticity. The material properties vary continuously through the thickness direction. Tanigawa's model for the variation of Poisson's ratio, the modulus of shear stress, and the coefcient of thermal expansion is considered...

متن کامل

thermal buckling of functionally graded beams

in this article, thermal stability of beams made of functionally graded material (fgm) is considered. the derivations of equations are based on the one-dimensional theory of elasticity. the material properties vary continuously through the thickness direction. tanigawa's model for the variation of poisson's ratio, the modulus of shear stress, and the coefcient of thermal expansion is...

متن کامل

Nonlinear Vibration Analysis of Piezoelectric Functionally Graded Porous Timoshenko Beams

In this paper, nonlinear vibration analysis of functionally graded piezoelectric (FGP) beam with porosities material is investigated based on the Timoshenko beam theory. Material properties of FG porous beam are described according to the rule of mixture which modified to approximate material properties with porosity phases. The Ritz method is used to obtain the governing equation which is then...

متن کامل

Thermal behavior analysis of the functionally graded Timoshenko\'s beam

The intention of this study is the analysis of thermal behavior of functionally graded beam (FGB). The distribution of material properties is imitated exponential function. For thermal loading the steady state of heat conduction with exponentially and hyperbolic variations through the thickness of FGB, is considered. With comparing of thermal behavior of both isotropic beam and FGB, it is appea...

متن کامل

Finite Element Analysis of Functionally Graded Skew Plates in Thermal Environment based on the New Third-order Shear Deformation Theory

Functionally graded materials are commonly used in thermal environment to change the properties of constituent materials. The new numerical procedure of functionally graded skew plates in thermal environment is presented in this study based on the C0-form of the novel third-order shear deformation theory. Without the shear correction factor, this theory is also taking the desirable properties a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archive of Applied Mechanics

سال: 2021

ISSN: ['1432-0681', '0939-1533']

DOI: https://doi.org/10.1007/s00419-021-01882-9